Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.080$
$S=1.037$
3676 reflections
210 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}^{2}\right)+(0.0390 P)^{2} \\
&+0.1372 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{i}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001
\end{aligned}
$$

$\Delta \rho_{\text {max }}=0.147 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.160 \mathrm{e}^{\AA^{-3}}$
Extinction correction: SHELXL97
Extinction coefficient: 0.018 (1)

Scattering factors from International Tables for Crystallography (Vol. C)
Absolute structure: Flack (1983)

Flack parameter $=0.03(5)$

Table 1. Selected geometric parameters $\left(\AA{ }^{\circ},^{\circ}\right)$

$\mathrm{Cl1}-\mathrm{C}^{\prime \prime}$	$1.7423(15)$	$\mathrm{N} 1-\mathrm{C} 1^{\prime \prime}$	$1.4311(18)$
$\mathrm{OI}-\mathrm{C}^{\prime}$	$1.3761(18)$	$\mathrm{N} 2-\mathrm{C} 3$	$1.3377(18)$
$\mathrm{OI}-\mathrm{C}^{\prime}$	$1.423(2)$	$\mathrm{N} 3-\mathrm{C} 7$	$1.132(3)$
$\mathrm{N} 1-\mathrm{C} 5$	$1.363(2)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.407(2)$
$\mathrm{N} 1-\mathrm{N} 2$			$1.366(2)$
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{N} 2$	$111.97(12)$	$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	$106.50(14)$
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{N} 1$	$104.66(12)$	$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 6$	$121.71(13)$
$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4$	$110.97(13)$	$\mathrm{N} 3-\mathrm{C} 7-\mathrm{C} 6$	$179.3(2)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$105.90(14)$		
$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$179.27(16)$	$\mathrm{C} 7^{\prime}-\mathrm{Ol}-\mathrm{C}^{\prime}-\mathrm{C}^{\prime}$	$170.19(17)$
$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 1^{\prime}-\mathrm{C}^{\prime}$	$-6.6(2)$	$\mathrm{N} 2-\mathrm{N} 1-\mathrm{Cl}^{\prime \prime}-\mathrm{C}^{\prime \prime}$	$57.7(2)$

The temperature of the crystal was controlled using an Oxford Cryosystems Cryostream Cooler (Cosier \& Glazer, 1986). Data were collected over a hemisphere of reciprocal space, by a combination of three sets of exposures. Each set had a different φ angle for the crystal and each exposure of 10 s covered 0.3° in ω. The crystal-to-detector distance was 5.01 cm . Coverage of the unique set was over 93% complete to at least 28° in θ. Crystal decay was monitored by repeating the initial frames at the end of the data collection and analysing the duplicate reflections; it was found to be negligible. H atoms were added at calculated positions and refined using a riding model. Anisotropic displacement parameters were used for all non-H atoms; H atoms were given isotropic displacement parameters equal to 1.2 (or 1.5 for methyl H atoms) times the equivalent isotropic displacement parameter of their parent atoms.

Data collection: SMART (Siemens, 1994a). Cell refinement: SAINT (Siemens, 1995). Data reduction: SAINT. Program(s) used to solve structure: SHELXTL/PC (Siemens, 1994b). Program(s) used to refine structure: SHELXL97 (Sheldrick. 1997). Molecular graphics: SHELXTLPC. Software used to prepare material for publication: SHELXTL/PC.

We wish to acknowledge the use of the EPSRC's Chemical Database Service at CLRC, Daresbury, England (Fletcher et al., 1996), for access to the Cambridge Structural Database (Allen \& Kennard, 1993).

[^0]
References

Allen. F. H. \& Kennard. O. (1993). Chem. Des. Autom. Nen's. 8. 31-37.
Cosier, J. \& Glazer, A. M. (1986). J. Appl. Cryst. 19. 105-107.
Flack. H. D. (1983). Acta Crvst. A39. 876-881.
Fletcher. D. A.. McMeeking. R. F. \& Parkin. D. (1996). J. Chem. Inf. Comput. Sci. 36. 746-749.
Herrman. E. \& Grabliks. J. (1961). Cancer Chemother. Rep. 14. 8590 .
McNew, G. \& Sundholm. N. K. (1949). Phytopathology. 39. 721-751.
Malhotra, S.. Parmar. V. S. \& Errington. W. (1997). Acta Chist. C53. 1885-1887.
Omodei-Sale. A.. Toia. E.. Galliani. G. \& Lerner. L. J. (1976). Chem. Abstr. 85, 192731.
Rich, S. \& Horsfall, J. G. (1952). Phytopatholog. 42. 457-460.
Sheldrick. G. M. (1996). SADABS. Empirical Absorption Correction Program. University of Göttingen. Germany.
Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen. Germany.
Sicmens (1994a). SMART Software Reference Manual. Siemens Analytical X-ray Instruments Inc.. Madison. Wisconsin. USA.
Siemens (1994b). SHELXTL/PC Reference Manual. Version 5.0. Siemens Analytical X-ray Instruments Inc.. Madison. Wisconsin. USA.
Siemens (1995). SAINT Soffiware Reference Manual. Version 4. Siemens Analytical X-ray Instruments Inc.. Madison. Wisconsin. USA.
Singh. S. K., Kumar. A.. Vats. A.. Bisht. K. S.. Parmar. V. S. \& Errington. W. (1995). Acta Crust. C51. 2404-2406.

Acta Cryst. (1998). C54, 846-849

3,4,5,6-Tetrafluoro-1,2,7,8-tetrakis(trifluoromethyl)phenanthrene and $3,4,7,8$-Tetra-fluoro-1,2,5,6-tetrakis(trifluoromethyl)anthracene

Dale C. Swenson, Michiharli Yamamoto and
Donald J. Burton

Department of Chemistry, University of Iow'a, Iowa City: Ia 52242, USA. E-mail: dale-swenson@uiowa.edu
(Received 12 June 1997: accepted 22 December 1997)

Abstract

A photocyclization reaction produces two isomers of $\mathrm{C}_{18} \mathrm{H}_{2} \mathrm{~F}_{16}$. Crystal structures show the major product to be 3,4,5,6-tetrafluoro-1,2,7,8-tetrakis(trifluoromethyl)phenanthrene, (1), and the minor product to be 3,4,7,8-tetrafluoro-1,2,5,6-tetrakis(trifluoromethyl)anthracene, (2). The phenanthrene skeleton in (1) is distorted from planarity by steric interaction between the 4- and 7-F atoms. Compound (2) is centered on an inversion center; the anthracene skeleton is nearly planar,

with the trifluoromethyl atoms displaced on either side of the molecular plane.

Comment

Photocyclization of (Z)-1,1,2,5,5,5-hexafluoro-4-\{p-[(Z)-1,2-bis(trifluoromethyl)-3,4,4-trifluoro-1,3-butadiene]-phenyl\}-3-trifluoromethyl-1,3-pentadiene at 254 nm gives a mixture of isomers, (1) and (2) (see Experimental), which were separated via elution over silica gel with hexane. The predominant isomer is (1). X-ray diffraction analyses establish the structures of both isomers.

The central ring of (1) (C5, C6, C11-C14) deviates significantly from planarity, presumably due to the F4...F7 close contact (Fig. 1a). The largest deviation from planarity for the $\mathrm{Cl}-\mathrm{C} 5, \mathrm{C} 14$ ring (plane 1) is 0.058 (2) \AA for C14. The largest deviation from planarity for the C6-C11 ring (plane 2) is 0.064 (2) \AA for C11. The dihedral angle between planes 1 and 2 is $27.3(1)^{\circ}$.

(a)

(b)

Fig. 1. Views of (a) molecule (1) and (b) molecule (2) showing displacement ellipsoids at the 35% probability level. Open bonds represent the minor component of the disordered trifluoromethyl groups.

The central ring has a slight twist conformation. The trifluoromethyl groups at Cl and C 2 , and also at C 9 and C10 are situated slightly above and below planes 1 and 2 , respectively (torsion-angle data and selected nonbonding F...F distances are in Table 2).

There is a minor disorder in the positioning of the C15 and C16 trifluoromethyl groups. The minor conformation [11.3(3)\%] has the trifluoromethyl groups flipped to the other side of plane 1 . The molecules of (1) stack in a tilted manner along the unit-cell c direction. The stacks pack with a herring-bone motif.

Molecules of (2) (Fig. 1b) are centered on crystallographic inversion centers and stack in a tilted manner along the unit-cell a direction. A minor disorder [5.4(2)\%] in the trifluoromethyl conformation similar to that found in (1) also exists in (2).

Atoms C4 and C5 in (2) are the sites of the trifluoromethyl substitution and have the largest deviation [0.046 (1) and $-0.063(1) \AA$, respectively] from the molecular least-squares plane. The C8 and C9 methyl C atoms are 0.274 (3) and -0.277 (2) \AA above and below the molecular plane. Presumably, these distortions from planarity are induced by steric interaction between the adjacent trifluoromethyl groups (torsion-angle data and selected non-bonding F..F contacts are in Table 4).

Experimental

(Z)-1,1,2,5,5,5-Hexafluoro-4-\{p-[(Z)-1,2-bis(trifluoromethyl)-3,4,4-trifluoro-1,3-butadiene]phenyl $\}$-3-trifluoromethyl-1,3pentadiene (1 g) was dissolved in hexane (10 ml) in a Rotaflo quartz tube. After freezing this solution with liquid nitrogen, the tube was degassed with a vacuum pump. The solution was thawed and placed in the photoreactor (254 nm) at room temperature overnight. After reaction, the solvent was evaporated and the residue obtained was purified via silicagel (70-230 mesh) chromatography (hexane) to give (1) and (2) with 28 and 7\% yields, respectively. Crystals were grown from hexane-benzene by slow evaporation.

Compound (1)

Crystal data
$\mathrm{C}_{18} \mathrm{H}_{2} \mathrm{~F}_{16}$
$M_{r}=522.20$
Monoclinic
$P 2$ ।
$a=8.291$ (1) \AA
$b=26.735(5) \AA$
$c=8.567(1) \AA$
$\beta=114.49(2)^{\circ}$
$V=1728.1$ (4) \AA^{3}
$Z=4$
$D_{x}=2.007 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius CAD-4 diffractometer

Mo $K \alpha$ radiation
$\lambda=0.7107 \AA$
Cell parameters from 22 reflections
$\theta=10.5-15.1^{\circ}$
$\mu=0.239 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism
$0.55 \times 0.36 \times 0.26 \mathrm{~mm}$ Colorless
$R_{\text {int }}=0.022$
$\theta_{\text {max }}=27.5^{\circ}$
$\theta / 2 \theta$ scans
Absorption correction: none 8254 measured reflections 3816 independent reflections 2639 reflections with
$I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.140$
$S=1.100$
3815 reflections
329 parameters
H atoms: see below
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0495 P)^{2}\right.$ $+1.091 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$h=-10 \rightarrow 7$
$k=-24 \rightarrow 34$
$l=-11 \rightarrow 10$
4 standard reflections
frequency: 240 min
intensity decay: $<1 \%$
$(\Delta / \sigma)_{\text {max }}=0.025$
$\Delta \rho_{\text {max }}=0.319 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.242 \mathrm{e}^{-3}$
Extinction correction: SHELXTL
Extinction coefficient: 0.0186 (17)

Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$ for (1)

$U_{\text {eq }}=(1 / 3) \sum_{i} \Sigma_{j} U^{i j} a^{i} a^{j} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	こ	$U_{\text {eq }}$
Cl	-0.2391 (3)	0.18451 (9)	-0.4915 (3)	0.0458 (6)
C2	-0.4237 (3)	0.18513 (10)	-0.5583 (3)	0.048 .5 (6)
C3	-0.5039 (3)	0.15946 (10)	-0.4687 (3)	0.0488 (6)
F3	-0.6812 (2)	0.15738 (7)	-0.5254 (2)	0.0699 (5)
C4	-0.4084 (3)	0.13521 (9)	-0.3177 (3)	0.0427 (5)
F4	-0.5021 (2)	0.11007 (6)	-0.2491 (2)	0.0587 (4)
C5	-0.2234 (3)	0.13368 (8)	-0.2457 (3)	0.0372 (5)
C6	-0.1159 (3)	0.10924 (8)	-0.0834 (3)	0.0371 (5)
C7	-0.1683 (3)	0.10299 (10)	0.0502 (3)	$0.04+3$ (5)
F7	-0.3150 (2)	0.12471 (7)	0.0463 (2)	$0.0630(5)$
C8	-0.0663 (3)	0.07773 (11)	0.1977 (3)	0.0487 (6)
F8	-0.1322 (2)	0.07473 (8)	0.3163 (2)	0.0728 (5)
C9	0.0955 (3)	0.05640 (9)	0.2230 (3)	0.0447 (5)
C10	0.1552 (3)	0.06284 (9)	0.0934 (3)	0.0427 (5)
C11	0.0579 (3)	0.09267 (9)	-0.0522 (3)	0.0393 (5)
C12	0.1325 (3)	0.11157 (11)	-0.1652 (3)	0.0496 (6)
C13	0.0454 (3)	0.14379 (11)	-0.2917 (3)	0.0510(6)
C14	-0.1392 (3)	0.15557 (9)	$-0.343+(3)$	0.0399 (5)
$\mathrm{C} 15 \dagger$	-0.1353 (5)	0.21765 (14)	-0.5614 (5)	0.06 .36 (9)
F15A \dagger	0.0135 (3)	0.23526 (9)	-0.4359 (3)	0.0851 (8)
F15B \dagger	-0.0840 (4)	0.19457 (12)	-0.6699 (3)	0.0928 (9)
Fl5C \dagger	-0.2243 (4)	0.25845 (10)	-0.6.343 (4)	0.1076 (11)
C15' \ddagger	-0.155 (2)	0.2092 (6)	-0.6017 (2)	0.064
F15D \ddagger	-0.043 (3)	0.1767 (7)	-0.617 (3)	0.095
F15E \ddagger	-0.267 (2)	0.2245 (8)	-0.754 (2)	0.095
F15F \ddagger	-0.067 (3)	0.2478 (8)	$-0.510(2)$	0.095
C16 \dagger	-0.5424 (5)	0.20824 (15)	$-0.7309(4)$	0.0644 (9)
F16A \dagger	-0.4712 (4)	0.20652 (11)	-0.8437 (3)	0.1005 (9)
F16B \dagger	-0.6956 (3)	0.18380 (11)	-0.8049 (3)	0.0984 (9)
F16C \dagger	-0.5798 (4)	0.25518 (9)	-0.7164 (3)	0.0894 (8)
C16' \ddagger	-0.549 (2)	0.2237 (4)	-0.684 (2)	0.064
F16D \ddagger	-0.587 (3)	0.2032 (7)	-0.835 (3)	0.097
F16E \ddagger	-0.697(2)	0.2325 (7)	-0.666 (2)	0.097
F16F \ddagger	-0.464 (2)	0.2663 (6)	-0.672 (3)	0.097
C17	0.2045 (4)	0.03071 (11)	0.3948 (3)	0.0573 (7)
F17A	0.1593 (3)	0.04611 (9)	0.5176 (2)	0.0839 (6)
F17B	0.3762 (2)	0.04166 (7)	0.4493 (2)	0.0728 (5)
F17C	0.1874 (3)	-0.01866 (7)	0.3838 (3)	0.0847 (6)
C18	0.3220 (4)	0.03747 (12)	0.0999 (4)	0.0569 (7)
F18A	0.3590 (3)	-0.00490 (7)	0.1890 (3)	0.0769 (6)
F18B	0.3038 (3)	0.02343 (8)	-0.0568 (3)	0.0822 (6)
F18C	0.4630 (2)	0.06655 (8)	0.1645 (3)	0.0860)(6)

[^1]Table 2. Selected geometric parameters $\left(\AA \AA^{\circ}\right)$ for (1)

$\mathrm{C} 3-\mathrm{F} 3$	$1.344(3)$	$\mathrm{Cl} 12-\mathrm{Cl} 3$	$1.337(4)$
$\mathrm{C} 4-\mathrm{F} 4$	$1.334(3)$	$\mathrm{F} 3 \cdots \mathrm{~F} 4$	$2.548(2)$
$\mathrm{C} 7-\mathrm{F} 7$	$1.336(3)$	$\mathrm{F} 4 \cdots \mathrm{~F} 7$	$2.390(2)$
$\mathrm{C} 8-\mathrm{F} 8$	$1.341(3)$	$\mathrm{F} 7 \cdots \mathrm{F8}$	$2.554(2)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{F} 4$	$121.7(2)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$124.2(2)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$124.0(2)$	$\mathrm{C} 6-\mathrm{C} 7-\mathrm{F} 7$	$121.2(2)$
$\mathrm{C} 14-\mathrm{Cl}-\mathrm{C} 2-\mathrm{C} 3$	$4.3(4)$	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{Cl1}$	$3.8(4)$
$\mathrm{C} 15-\mathrm{Cl}-\mathrm{C} 2-\mathrm{Cl} 16$	$15.5(4)$	$\mathrm{C} 17-\mathrm{C} 9-\mathrm{Cl}-\mathrm{C} 18$	$10.1(4)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$-27.6(4)$	$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	$-10.7(4)$

Compound (2)

Crystal data
$\mathrm{C}_{18} \mathrm{H}_{2} \mathrm{~F}_{16}$
$M_{r}=522.20$
Triclinic
$P \overline{1}$
$a=8.268(1) \AA$
$b=8.469$ (2) \AA
$c=8.274(2) \AA$
$\alpha=126.06(2)^{\circ}$
$\beta=110.62(2)^{\circ}$
$\gamma=90.19(2)^{\circ}$
$V=421.0(2) \AA^{3}$
$Z=1$
$D_{s}=2.060 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured
Data collection
Enraf-Nonius CAD-4
diffractometer
$\theta / 2 \theta$ scans
Absorption correction: none
3758 measured reflections
1915 independent reflections
1603 reflections with
$I>2 \sigma(I)$
Refinement
Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w \cdot R\left(F^{2}\right)=0.117$
$S=1.110$
1914 reflections
172 parameters
H atoms: see below
$u=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0488 P)^{2}\right.$
$+0.1566 \mathrm{P}]$
where $P=\left(F_{0}^{2}+2 F_{i}^{2}\right) / 3$

Mo $K \alpha$ radiation
$\lambda=0.7107 \AA$
Cell parameters from 25 reflections
$\theta=14.0-22.0^{\circ}$
$\mu=0.245 \mathrm{~mm}^{-1}$
$T=291$ (2) K
Thick plate
$0.44 \times 0.37 \times 0.22 \mathrm{~mm}$
Pale yellow

Table 3. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(A^{2}\right)$ for (2)

$U_{\text {eq }}=(1 / 3) \sum_{i} \sum_{j} U^{i j} a^{i} a^{j} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	$\stackrel{\square}{ }$	こ	$U_{\text {eq }}$
Cl	0.9369 (2)	-0.0771 (2)	0.0814 (3)	0.0353 (3)
C2	0.8727 (2)	-0.1519 (3)	0.1681 (3)	0.0422 (4)
F2	0.9110 (2)	-0.3185 (2)	0.1372 (2)	$0.0609(4)$
C3	0.7775 (2)	-0.0576 (3)	0.2855 (3)	0.0440 (4)
F3	0.7236 (2)	-0.1384(2)	0.3632 (2)	0.0641 (4)
C4	0.7304 (2)	0.1186 (3)	0.3214 (3)	0.0397 (4)
C5	0.7740(2)	0.1853 (2)	0.2209 (3)	0.0370 (4)
C6	0.8864 (2)	0.0954 (2)	0.1075 (3)	0.0347 (3)
C7	0.9542 (2)	0.1697 (2)	0.0248 (3)	0.0374 (4)

C8t	0.6434 (3)	0.2291 (3)	$0.4812(3)$	0.0487 (5)
F8A \dagger	0.7035 (2)	0.4299 (2)	0.6055 (2)	0.0646 (4)
F8B \dagger	$0.4656(2)$	$0.1764(2)$	0.3769 (3)	0.0704 (5)
$\mathrm{F8C} \dagger$	0.6841 (2)	0.1906 (3)	0.6228 (3)	0.0761 (5)
C8' \ddagger	0.609(2)	().212 (3)	0.44) (3)	0.049
F8 ${ }^{\prime} \ddagger$	0.473 (3)	0.236 (4)	$0.320(4)$	0.073
$F 8 B^{\prime} \ddagger$	0.548 (4)	0.087 (3)	$0.463(4)$	0.073
F8C ${ }^{\prime} \ddagger$	$0.703(3)$	$0.390(4)$	0.637 (4)	0.073
C9 \dagger	0.7027 (3)	$0.3492(3)$	0.2174 (3)	0.0463 (5)
F9A \dagger	0.5545 (2)	0.3710 (3)	0.2485 (3)	0.0730 (5)
F 9 B \dagger	0.8258(3)	0.5289 (2)	0.3679 (3)	0.0760 (5)
$\mathrm{F9}$ C \dagger	0.6542 (2)	0.3049 (3)	$0.0198(2)$	$0.0607(4)$
$\mathrm{C9}^{\prime} \ddagger$	0.752 (3)	0.388 (2)	0.270 (4)	0.046
F9A \ddagger	0.646 (4)	0.319(5)	$0.066(3)$	0.070
F9B' \ddagger	0.672 (3)	0.487 (4)	0.400 (4)	0.070
F9C \ddagger	0.9()4 (3)	0.514 (4)	0.347 (5)	0.070

\dagger Site occupancy $=0.946$ (2). $\quad \ddagger$ Site occupancy $=0.054$ (2).
Table 4. Selected geometric parameters $\left(\AA^{\circ}{ }^{\circ}\right)$ for (2)

$\mathrm{C} 2-\mathrm{F} 2$	$1.339(2)$	$\mathrm{F} 2 \cdots \mathrm{~F} 3$	$2.631(2)$
$\mathrm{C} 3-\mathrm{F} 3$	$1.341(2)$		
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-8.4(2)$	$\mathrm{C} 8-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 9$	$-14.0(3)$

The H atoms in each structure were refined with independent isotropic displacement parameters. The C 15 and $\mathrm{Cl}^{2} \mathrm{CF}_{3}$ groups in (1), and the C8 and C9 CF_{3} groups in (2) were slightly disordered. In each case, the atoms of the major component of the disorder were refined with anisotropic displacement parameters. The occupancy for the major component in (1) and (2) refined to 0.887 (3) and 0.946 (2), respectively. In each case, the sum of the occupancy of the major plus minor component was constrained to be 1.0 . In both structures, the minor disorder component CF_{3} groups were treated as rigid groups; C-F 1.32 A , tetrahedral angles, $U_{\mathrm{iso}}\left(\mathrm{C}^{\prime}\right)=U_{\mathrm{iso}}(\mathrm{C})$ and $U_{\text {iso }}\left(\mathrm{F}^{\prime}\right)=1.5 U_{\mathrm{itoo}}\left(\mathrm{C}^{\prime}\right)$. The ring-carbon distances were restrained to be the same (i.e. $\mathrm{C} 1-\mathrm{C} 15=\mathrm{C} 1-\mathrm{C} 15^{\prime}$, etc.; s.u. $=$ $0.01 \AA$)

For both compounds, data collection: CAD-4 Operations Manual (Enraf-Nonius, 1977); cell refinement: CAD-4 Operations Manual; data reduction: PROCESS in MolEN (Fair, 1990); program(s) used to solve structures: MULTAN80 (Main et al., 1980); program(s) used to refine structures: SHELXTL (Sheldrick, 1995); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

DJB wishes to acknowledge the National Science Foundation for support of this project.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FG1361). Services for accessing these data are described at the back of the journal.

References

Enraf-Nonius (1977). CAD-4 Operations Manual. Enraf-Nonius, Delft, The Netherlands.
Fair. C. K. (1990). MolEN. An Interactive Intelligent System for Crustal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
Main, P.. Fiske, S. J., Hull, S. E.. Lessinger. L., Germain, G., Declercq, J.-P. \& Woolfson. M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Universitics of York, England, and Louvain. Belgium.
Sheldrick, G. M. (1995). SHELXTL. Structure Determination Programs. Version 5. Siemens Analytical X-ray Instruments Inc., Madison. Wisconsin, USA.

Acta Cryst. (1998). C54, 849-851

Ethyl 3,3-Dimethyl-2-(1-oxo-3-phenylinden-2-yl)acrylate

Menahem Kaftory, Yulia Goldberg, Stephen
Goldberg \dagger and Mark Botoshansky
Department of Chemistry, Technion-Israel Institute of Technology, Haifa, Israel 32000. E-mail: kaftory@tx. technion.ac.il
(Receined 30 June 1997; accepted I December 1997)

Abstract

The crystal structure of the title compound, $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{3}$, was determined from intensities collected at 120 K . The dihedral angle between the phenyl ring and the indenone moiety is $124.6(1)^{\circ}$. The non-bonded distance between the potentially reacting centers is $3.697(5) \AA$.

Comment

The title compound, (I), was synthesized (Heller, 1985) as a representative of a new potentially photochromic system that is similar to the fulgides (Stobbe \& Eckert, 1905; Stobbe, 1911; Helier \& Langan, 1981; Heller \& Oliver, 1981). It was hoped that the photochemical ring closure from (I) to (II) would be possible.

The crystal structure of (I) was determined at low temperature (120 K); the conformation of the butadiene fragment is compared with that of some related fulgides (Kaftory et al., 1998).

Some of the fulgides (Kaftory et al., 1998) are very rigid and because of the bulky substituents at the double bonds, the diene system in these compounds is severely skewed. In contrast, the diene system in (I) is not rigid and free rotation about the $\mathrm{Cl}-\mathrm{C} 2$ bond determines the conformation of the molecule. The torsion angle of the butadienyl fragment, $\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 16-\mathrm{C} 17$, is $-63.1(5)^{\circ}$ in (I), while it is $55(1)^{\circ}$ in 2-fluorenylidene-3-adamantylidenesuccinic anhydride and $39(1)^{\circ}$ in 2-fluorenylidene-3-(3,4,5-trimethoxybenzylidene)succinic anhydride, as found by Kaftory et al. (1998).

[^2]
[^0]: Supplementary data for this paper are available from the IUCr electronic archives (Reference: CF1231). Scrvices for accessing these data are described at the back of the journal.

[^1]: \dagger Site occupancy $=0.887$ (3). \ddagger Site occupancy $=0.113$ (3).

[^2]: \dagger Current address: Department of Chemistry. Adelphi University. Box 701. Garden City, NY 11530. USA; work carried out while on sabbatical leave.

